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Minimal Coupling of the Kalb–Ramond
Field to a Scalar Field

E. Di Grezia1,2,3 and S. Esposito1,2

We study the direct interaction of an antisymmetric Kalb–Ramond field with a scalar
particle derived from a gauge principle. The method outlined in this paper to define a
covariant derivative is applied to a simple model leading to a linear coupling between the
fields. Although no conserved Noether charge exists, a conserved topological current
comes out from the antisymmetry properties of the Kalb–Ramond field. Some interesting
features of this current are pointed out. Possible applications of our results to cosmology
and to the theory of three-dimensional Josephson junction arrays are envisaged.

KEY WORDS: Kalb–Ramond field; minimal coupling; topological currents; Noether
symmetries.

1. INTRODUCTION

Space-time noncommutativity is one of the key new ideas which follows
from recent developments in string and matrix theory (Lizzi and Szabo, 1998).
Noncommutativity implies general covariance and, therefore, it seems likely that
a noncommutative Yang–Mills theory is a good candidate for a unified and poten-
tially renormalizable theory of the fundamental interactions including gravity.

Whereas the structure of the space-time becomes noncommutative, we can
describe it, in analogy to quantum phase space, in terms of the algebra generated
by noncommuting coordinates:

[xµ, xν ] = i θµν(x), (1)

with θµν an antisymmetric tensor (Lizziet al., 2002).
Antisymmetric tensor fields are widely used in string models (Cremmer and

Scherk, 1974; Kalb and Ramond, 1974; Nambu, 1976) as well as in some su-
persymmetric theories. For example, they appear naturally inN = 2 extended
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supersymmetry as auxiliary fields (being the highest dimension fields in a
supermultiplet) and in the 11-dimensional formulation ofN = 8 extended su-
pergravity in which they are dynamical fields. Furthermore, in quantum grav-
ity, antisymmetric tensor fields appear as Lorentz ghost fields (Townsed and van
Niewenhuizen, 1977). It is, therefore, quite important to study the dynamics of
such fields and, especially, their coupling to matter (scalar or fermion particles).

The best studied example of an antisymmetric tensor field is the electromag-
netic field strengthFµν , whose dynamics is very well known (see, for example,
Jackson, 1963). The coupling of the electromagnetic field to matter fields pro-
ceeds, usually, through thegauge principlewith the aid of the vector potentialAµ
(a massless rank 1 field): interaction is introduced in the theory by requiring local
gauge invariance for the matter fields. In the electromagnetic case, the gauge trans-
formations for the vector potential areAµ(x)→ Aµ(x)+ ∂µα(x), whereα(x) is
an arbitraryx-dependent function, and the interaction with a charged scalar fieldϕ

(with chargee) is obtained by replacing the usual derivative∂µ with the covariant
derivativeDµ in the free field Lagrangian:

∂µ→ Dµ = ∂µ + ieAµ. (2)

In fact, with this substitution, the total Lagrangian (free fields+ interaction) be-
comes invariant under the local transformation:

ϕ(x)→ e−ieα(x)ϕ(x). (3)

As a consequence of gauge invariance, by virtue of the Noether theorem, electric
charge conservation is obtained. Note, however, that such a minimal coupling
prescription is not the only possible one; for example, magnetic moment interaction
is described by a Lagrangian term involving directly the physical field strengthFµν
rather than the gauge-dependent vector potential.

Several papers have appeared (Botta Cantcheff, 2002) in which the generaliza-
tion of the gauge principle to abelian rank 2 antisymmetric fields (Kalb–Ramond
fields) is studied. However the interaction of a scalar or fermion particle with
a Kalb–Ramond field usually proceeds through the coupling with the Maxwell
field (Hari Dass and Shajesh, 2002). Indeed, the matter particles interact with the
electromagnetic field coupled to a Kalb–Ramond field so that only an indirect
interaction is allowed.

While the coupling between such fields and matter fields can always be in-
troduced by adding an ad hoc term in the complete Lagrangian without invoking a
gauge principle, the main problem with an interaction generated by (abelian) gauge
group transformation comes from the difficulty to construct a covariant derivative
from rank 2 gauge fields in analogy with the electromagnetic case. The present
work is aimed to further study such a problem by considering, for simplicity,
massless fields.

In view of some applications considered below in the paper, in the next section
we briefly review the dynamics of an antisymmetric tensor field and point out its
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substantial equivalence (in the massless case) with that of a (real) scalar field.
Instead in section 3 we give a procedure to couple a scalar particle with a Kalb–
Ramond field through a gauge principle with a linear coupling; some comments on
quadratic coupling are also reported. Finally, in section 4, we study the dynamics of
the interacting fields pointing out some peculiar features, and in section 5 we outline
some interesting applications, while in the last section we give our conclusions
and outlook.

2. DYNAMICS OF A FREE KALB–RAMOND FIELD

Let us consider a Maxwell-like gauge theory where the role of the vector po-
tentialAµ is played by an antisymmetric tensor fieldθµν . Its dynamics is described
by the following Lagrangian:

Lθ = − 1

12
HλµνHλµν , (4)

where the field strengthHλµν is defined by

Hλµν ≡ ∂λθµν + ∂µθνλ + ∂νθλµ. (5)

The equations of motion for the freeθµν field are, then, similar to the Maxwell
equations and read as follows:

∂λHλµν = 0. (6)

The Lagrangian in Eq. (4) is invariant under the gauge transformations:

θµν → θ ′µν = θµν + ∂µ3ν − ∂ν3µ, (7)

where3ν is an arbitrary vector field. This gauge freedom can be used to simplify
the writing of the field equations. Indeed, for example, by using the “generalized”
Lorentz condition∂µθµν = 0 we find thatθµν satisfies the ordinary wave equation:

hθµν = 0. (8)

It is easy to prove that the degrees of freedom of the antisymmetric tensor
field θµν are just the same as those of a scalar fieldθ . Let us consider the dual
vector field (in the sense of Poincar´e) θµ defined by

θµ ≡ 1

6
εµνρσ H νρσ = 1

2
εµνρσ ∂

νθρσ , (9)

which satisfies the Bianchi-type identity:

∂µθµ = 0. (10)

The equations of motion in (6) now become

∂µθν − ∂νθµ = 0, (11)
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pointing out thatθµ has to be the gradient of a scalar fieldθ :

θµ = ∂µθ. (12)

With these changes of variable, the Lagrangian describing the system can be
cast in a form similar to that for a scalar field:

Lθ = 1

2
∂µθ∂

µθ , (13)

this showing that the dynamics of a massless antisymmetric tensor fieldθµν is
completely equivalent (on the classical level4 ) to that of a massless real scalar field
θ . Note, however, that Eq. (12) is a direct consequence of the free field equations
of motion (11), so that the mentioned equivalence holds true only in the case of
noninteracting fields.

3. GAUGE PRINCIPLE WITH A LINEAR COUPLING

Let us consider a charged scalar fieldφ described by the usual Lagrangian:

Lφ = (∂µφ)†(∂µφ)− V(φ), (14)

whereV(φ) is a given scalar potential including, eventually, a mass term. In this
section we study direct interaction of this field with a Kalb–Ramond fieldθµν
generated by possible gauge group transformations leading to linear coupling with
theθµν field.

In analogy with the electromagnetic case, we introduce a covariant derivative
Dµ as follows:

i Dµ = i ∂µ + kXµ, (15)

whereXµ is a rank 1 tensor to be defined in terms of theθµν field andk is a suitable
coupling constant.

The Lagrangian describing the scalar fieldφ interacting withθµν is, therefore,

Lint = (Dµφ)†(Dµφ)+ V(φ). (16)

Obviously the Lagrangian in Eq. (16) must be invariant under the gauge transfor-
mation in Eq. (7) so that the transformation properties ofXµ (and the corresponding
ones for the fieldφ) are crucial in the identification ofXµ itself.

Note, however, that the fieldXµ cannot be written as a gradient of a given
functionα(x), to have a “genuine” interaction Lagrangian in Eq. (16). Indeed, let
us assume that

Xµ = ∂µα, (17)

4 For the quantum equivalence, see, for example, Duff and van Nieuwenhuizen (1980), Mecklenburg
and Mizrachi (1984), and Pathinayakeet al. (1988).
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and consider a local phase transformation for the scalar fieldφ:

φ→ 8 = φeikα. (18)

Substitution into Eq. (16) immediately leads to

Lint = (Dµφ)†(Dµφ)+ V(φ) = (∂µ8)†(∂µ8)+ V(φ), (19)

and since8 andφ represent the same physical object, we conclude that the inter-
action introduced by means of theXµ field in Eq. (17) is fictitious, because it can
be reabsorbed by a phase redefinition of the scalar field.

Starting from the rank 2 tensorθµν , the simplest linear choice forXµ is the
following:

Xµ = ∂νθµν. (20)

Such a definition forXµ is, however, useful only when the “generalized” Lorentz
condition is not fulfilled, since in this caseXµ is identically zero and no physical
interaction appears. Disregarding this gauge choice, the gauge group for the scalar
field φ is easily obtained. Indeed, by applying the gauge transformation in Eq. (7)
to the Lagrangian in (16), we find that it remains unchanged if the scalar fieldφ

transforms as follows:

φ→ φ′ = φeikη, (21)

with η = ∂ν3ν . Note that the gauge freedom for theθµν field is not altered if in
Eq. (7) we choose a divergence-less gauge function3ν . In this caseη is zero and
Eq. (21) reduces to the unit transformation so that the gauge group underlying the
choice in Eq. (20), when it is applicable, acts as the identity on the scalar fieldφ. As
a consequence, by means of the Noether theorem, no conserved charge comes out.

The only alternative forXµ, which is linear in theθµν field, is the following

Xµ = θµ = 1

2
εµνρσ ∂

νθρσ . (22)

Now we have no limitation on the gauge condition to be used and is a simple
task to show that the gauge group associated to the scalar field is, again, the
identity. Indeed, it is easy to convince ourselves thatXµ in Eq. (22) is invariant
under the gauge transformation in Eq. (7), and thus the Lagrangian in Eq. (16) is
automatically invariant whenφ is unchanged5 :

φ→ φ′ = φ. (23)

We remark that the choice (22) forXµ is not a trivial one sinceXµ does not satisfy
the constraint (17). In fact, as pointed out in the previous section, the dual fieldθµ
can be written as the gradient ofθ (see Eq. (16)) only for a massless noninteracting

5 More in general, we can allow a phase transformationφ→ φ′ = φeiβ , with a constantβ.
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Kalb–Ramond field, which is not the present case. It is remarkable that in the limit
of no interaction theXµ field becomes unphysical.

A final remark on the physical dimensions of the coupling constant is in order.
We immediately see that, for the cases considered above,k has the dimensions of
the inverse of a mass, so that the corresponding theory is nonrenormalizable. We
point out that such a property is a peculiar feature of Quantum Gravity, which is a
natural framework, however, for the theory developed here.

3.1. Nonlinear Coupling

For completeness, we briefly discuss some particular direct interactions be-
tween a scalar field and a Kalb–Ramond field involving nonlinear terms (which
are quadratic in the Kalb–Ramond field).

First of all we note thatn-linear (n > 1) terms inθµν appearing in the covari-
ant derivative have to be gauge invariant in order to assure the invariance of the
Lagrangian (neglecting terms which are total divergences). Indeed, when consid-
ering theXµ field where, for example, non gauge invariant bilinear terms inθµν
appear, we recognize that, under a gauge transformation (7), two derivatives of two
gauge (four vectors) functions3µ come out. In general, the corresponding gauge
terms in (Dµφ)†(Dµφ) cannot be absorbed by a phase transformation (containing
only one scalar function) of the scalar fieldφ.

Therefore, simple choices forXµ involve only the gauge-invariant fieldHµνρ

and its dualθµ and, as a consequence, the gauge group is the identity.
Some examples of quadratic interactions are as follows:

Xµ = θν∂νθµ, (24)

Xµ = εαβγ δ∂ηHµαβHγ δη, (25)

Xµ = εµναβ∂νHαβγ θγ . (26)

Note that in the case considered the Eq. (25) (and for similar terms),Xµ vanishes
only whenHγ δη satisfies its equation of motion in absence of interaction Eq. (6).
Finally, we point out that allowing quadratic terms forXµ as those in Eqs. (24)–(26)
(and similar ones), the coupling constantk in the covariant derivative must have
the dimensions of the inverse of the 4th power of a mass, so that the nonrenormal-
izability of the theory is greatly worsened with respect to the linear coupling case.

4. INTERACTING FIELD DYNAMICS

The dynamics of a charged scalar field interacting directly with a Kalb–
Ramond field is described by the following Lagrangian:

L = (Dµφ)†(Dµφ)−m2φ†φ − 1

12
HµνρHµνρ , (27)
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where the covariant derivative is written as in Eq. (15) and, for simplicity, we
have neglected a scalar potential term. By expliciting theXµ term, we can rewrite
Eq. (27) as

L = (∂µφ)†(∂µφ)− (m2− k2X2)φ†φ

−ikXµ[φ∂µφ† − φ†∂µφ] − 1

12
HµνρHµνρ , (28)

where the second term in the sum accounts for the effective mass acquired by the
scalar particle interacting with the Kalb–Ramond field while the following term
describes this interaction.

The Euler–Lagrange equation forφ immediately follows

∂µ∂
µφ + (m2− k2X2)φ = 2ikXµ∂

µφ + ikφ∂µXµ. (29)

Note that, in the linear coupling case, the last term vanishes, since∂µX = 0.
Instead, the equations of motion for the interacting Kalb–Ramond field are

∂σ Hσµν = Jµν , (30)

with

Jµν = 2∂ρ
{[−ik(φ∂σφ

† − φ†∂σφ)+ 2k2|φ|2Xσ
] ∂Xσ

∂(∂ρθµν)

}
− 2[−ik(φ∂σφ

† − φ†∂σφ)+ 2k2|φ|2Xσ ]
∂Xσ

∂θµν
. (31)

Given the symmetry properties of theθµν field, it follows that the currentJµν is
antisymmetric while exchanging the indicesµ andν:

Jµν = −Jνµ. (32)

Moreover, from the field Eq. (30) we deduce that, despite of the explicit form of
Xµ, Jµν is a conseved current:

∂µJµν = 0. (33)

Note that such a property follows, again, from the antisymmetry ofHσµν .
Let us now consider the explicit interesting case in whichXµ is given by

Eq. (22). After some algebra, we obtain the following expression for the current:

Jµν = ∂σTσµν (34)

with

Tσµν = −2(ikεσρµνφ
†∂ρφ + k2|φ|2Hσµν). (35)

It is remarkable that, in the case considered, the currentJµν is the gradient of
an antisymmetric rank 3 tensorTσµν . Indeed, as a consequence of this, we have that
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Eq. (33) holds independently of the equations of motion (by taking the divergence
of Eq. (34) we obtain a vanishing R.H.S due to the symmetry properties ofTσµν),
so thatJµν is a conserved topological current. Moreover on substituting Eq. (34)
into Eq. (30), we find that

∂µ H̃µρσ = 0 (36)

with

H̃µρσ = Hµρσ − Tµρσ , (37)

i.e., the novel fieldH̃µρσ can be interpreted as a “dressed” Kalb–Ramond field
satisfying the free field equation (36).

4.1. The Symmetry Group of the Topological Current

Let us now turn back to the topological currentJµν in Eqs. (34) and (35) and
write it as sum of a termJ0

µν , which does not depend explicitly on the Kalb–Ramond
field, and a termJ1

µν , which vanishes for vanishingHµνρ :

Jµν = −2k
(
J0
µν + k J1

µν

)
(38)

J0
µν = εαβµν(∂αϕ†)(∂αϕ), (39)

J1
µν = ∂α(|ϕ|2Hαµν). (40)

The “free” currentJ0
µν remains invariant if we perform a rotation with an imaginary

angleiα of the fieldsϕ, ϕ∗6 :(
ϕ

ϕ∗

)
→
(
ϕ′

ϕ∗′

)
=
(

cosiα siniα
− siniα cosiα

)(
ϕ

ϕ∗

)
(42)

However the termJ1
µν , and hence the whole currentJµν , is not invariant

under the group defined above, so that the corresponding topological symmetry
can be only viewed as an approximate invariance of the conserved current in the
limit of a small coupling constant (theJ1

µν-term is quadratic ink). The general
transformation for the scalar fieldϕ leaving invariant the whole currentJµν is the
following:

ϕ→ ϕ′ = ϕei (α|ϕ|2+β), (43)

6 More in general, the currentJ0
µν is left unchanged if the fieldsϕ, ϕ∗ undergo the following linear

transformation: (
ϕ

ϕ∗

)
→
(
ϕ′
ϕ∗′

)
=
(

a b
b∗ a∗

)
+
(
ϕ

ϕ∗

)
+
(

c
c∗

)
(41)

with a, b, c three arbitrary complex numbers satisfying the constraint|a|2 − |b|2 = 1. Note that, since
the determinant of the transformation matrix is equal to 1, the group of transformations defined in
(41) is that ofequiaffinitiesin the complex plane, which is a subgroup ofSL(2, C).
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with α, β two real parameters, and, in the limitα = 0, we recover the simple global
phase transformation. However, since Eq. (43) is highly nonlinear forα 6= 0, it is
not evident the physical meaning corresponding to the transformation in Eq. (43).

5. APPLICATIONS

We here consider two (between others) possible applications of our results,
namely cosmology and condensed matter physics (Josephson junction).

In Kalb–Ramond cosmologies (Kao, 1992; Stein-Schabes and Gleiser, 1986)
phenomenological limits on some relevant parameters mainly come from axion
bounds (Durrer and Sakellariadou, 2000; Giovannini, 1999) by invoking the equiv-
alence between the degrees of freedom of a massless antisymmetric tensor field
and those of a massless scalar field (axion). However as pointed out in section 2,
this equivalence holds true only in the case of noninteracting fields, so that ax-
ion bounds should be extended with care to Kalb–Ramond fields. Such fields,
however, can also account for a torsion term in the evolutionary dynamics of the
universe (Gorbatoveet al., 2002; Kao, 1993; Karet al., 2002; SenGupta and Sinha,
2001) and its coupling to fermions could result in a helicity flip for them mediated
by parity violation (Mukhopadhyaya, 2002a,b). The coupling to cosmologically
relevant scalar fields, instead, has not been emphasized in the literature, mainly
because of a lacking of a minimal coupling prescription, although the interaction
of a Kalb–Ramond with a scalar field may be mediated by the electromagnetic
interaction (Hari Dass and Shajesh, 2002).

In particular the direct coupling of the inflaton (or dilaton) to Kalb–Ramond
torsion field may result in a short period of anisotropy in the very early stages of
the expanding inflationary universe (Di Greziaet al., 2003). The results obtained
here will be analyzed in this context in future papers.

Another relevant application of our results is, instead, in condensed matter
physics. In fact it has been shown that charge fluctuations around a given ground
state in a three-deminsional Josephson junction array can be represented in terms
of an antisymmetric Kalb–Ramond gauge fieldθµν (Diamantiniet al., 1995, 1996;
Dorey and Movromatos, 1990; Kovner and Rosenstein, 1990; Semenoff and Weiss,
1990). This field is coupled to a Maxwell gauge fieldAµ by means of a topological
mass term in the BF Model (Allenet al., 1991; Balachandranet al., 1982, 1994):

LBF = − 1

12g2
HµνρHµνρ + κ

4π
θµνε

µνλρFλρ − 1

4e2
FµνFµν. (44)

HereAµ describes an ordinary photon with field strength given byFµν = ∂µAν −
∂νAµ; as noted in Diamantiniet al. (1996), the coupling in Eq. (44) induces a
topological mass for the photon:

m= egκ

π
, (45)
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which represents the plasma frequency of Josephson junction array. However in
that paper the interaction of the Kalb–Ramond field with Cooper pairs in the junc-
tion array has not been considered, and we observe that the minimal coupling
with scalar degrees of freedom analyzed here has a natural framework in the BCS
theory (Tinkham, 1975), where only the singlet state of Cooper pairs are taken into
account. At a first look, such a coupling would result in an effective topological
mass for the Cooper pairs, changing the gap in their energy spectrum. However,
since the pairs have a large mass, which is not observable if the junction is in
its superconducting phase, this spectrum change would not influence the physical
behavior of the three-dimensional Josephson junction array. Instead the induced
effective mass for the Kalb–Ramond field, which is massless at the beginning
(i.e., without interaction), has far-reaching implications. In fact by studying the
Josephson junction array with a simple model of two interacting fluids (the charge
fluctuation fluid and the Cooper pair one), we find that charge fluctuations ac-
quire mass and this could lead to a significant change of the superconductivity
properties. In particular, by computing the free energy in this model, although
no relevant modification of the transport properties would be in order, we expect
an improvement of the superconductivity properties and a sensible change of the
critical temperature. This subject will be addressed in detail in a future work.

6. CONCLUSIONS

In this paper we have introduced a direct interaction between a scalar par-
ticle and a Kalb–Ramond field by defining a covariant derivativeDµ, where an
appropriate auxiliary vector fieldXµ (depending on the Kalb–Ramond field) ap-
pears. Several possible choices forXµ have been studied, leading to linear or
quadratic coupling with the scalar field. In the simple, viable models considered
here, the gauge group underlying the theory is the identity, so that no conserved
Noether charge exists. However, because of the antisymmetry properties of the
Kalb–Ramond field, a conserved (antisymmetric) topological current arises in the
simplest model, which appears in the equations of motion forHµνρ . Since this
current is a divergence of a rank 3 antisymmetric tensor, it is possible to define
a “dressed” Kalb–Ramond field strength, obeying the free field equations, which
describe the dynamics of the interacting field.

Some possible applications of our results are concerned with the theory of
gravity, where a zero-mass Kalb–Ramond field is the source of torsion in Einstein–
Cartan theory (SenGupta and Sur, 2001). Moreover, in recent years, it has been
pointed out that the presence of Kalb–Ramond fields in the background space-time
leads to several interesting astrophysical and cosmological phenomena like cosmic
optical activity and neutrino helicity flip (Gorbatovet al., 2002; Karet al., 2002;
SenGupta and Sinha, 2001). This motivates the study of some important problems
related to the standard Friedman–Robertson–Walker cosmological model in light
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of Kalb–Ramond cosmology (Lizziet al., 2002; SenGupta and Sur, 2002) in an
inflationary framework, where the coupling to a scalar field is crucial.

Further important implications of the results obtained here are expected in the
theory of three-dimensional Josephson junction arrays, where an effective mass
for charge fluctuations arises from the interaction with Cooper pairs in the BCS
theory. This would lead to an improvement of the superconductivity properties of
the junction itself, along with a change of its critical temperature.
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